

Integrated Servo Motor ISV Series

BLDC Servo Motor + Drive, 24-50VDC, Frame 57mm ,90W-180W

www.skysmotor.com.mx

i

Chapter 1 Introduction	2
1.1 Features and specifications	2
1.2 Mechanical Specifications	3
Chapter 2 Conection	4
2.1 Connectors and Pin Assignment	4
2.2 DIP Switch Settings	5
2.3 RS232 Communication Cable Connections	5
2.4 Typical Connections	6
Chapter 3 Parameter	8
3.1 Parameter List	8
3.2 Parameter function	8
3.2.1 Basic Setting	8
3.2.2 Gain Adjustment	10
3.2.3 Vibration Suppression	12
3.2.4 Velocity Control	12
3.2.5 I/F Monitoring Function	13
3.2.6 Extending setup	15
Chapter 4 Alarm	16
Chapter 5 Run	17
5.1 Inspection Before trial Run	17
5.2 Run	17
5.2.1 Position control	17
5.2.2 Internal speed control	18
Chapter 6 Order information	19
Appendix	19
How to find the hidden parameter	
Trouble shooting	
-	

Chapter 1 Introduction

1.1 Features and specifications

iSVxxx integrated servo motor is a 57mm frame size brushless motor integrated with a 16bit encoder and a servo drive. At very compact size and with all components integrated, the iSVxxx can save mounting space, eliminate encoder connection & motor wiring time, reduce interference, and cut/reduce cable and labor costs.

Integrated compact size for saving mounting space & setup time, and reducing electrical interference.

- Step & direction command input for position control
- Compatible mounting size with stepper motor
- Smooth motor movement and excellent respond time
- Isolated control inputs of Pulse, Direction
- In-position and fault outputs to external motion controllers for complete system controls
- Over voltage, over-current, and position-error protection

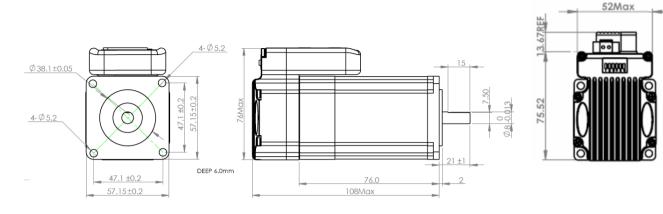
Electrical Specifications

Parameter	Min	Typical	Max	Unit
Input Voltage	20	36	50	VDC
Continuous Current	0	-	6.0	А
Pulse Input Frequency	0	-	0-300	kHz
Pulse Voltage	0	5	24	V
Logic Signal Current	7	10	16	mA
Isolation Resistance	100	-	-	MΩ

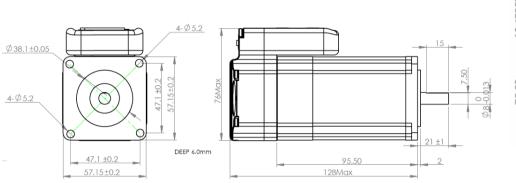
Note : The max pulse frequency is software configurable

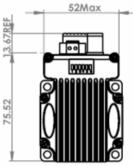
Operating Environment

Cooling	Natural Cooling or Forced cooling				
	Environment	Avoid dust, oil fog and corrosive gases			
Operating	Ambient Temperature	0° C $- 40^{\circ}$ C (32 $^{\circ}$ F $- 104^{\circ}$ F)			
Environment	Humidity	40%RH — 90%RH			
	Operating Temperature (Heat Sink)	70°С (158°Ғ) Мах			
Storage Temperature	-20°C — 65°C (-4°F — 149	°F)			

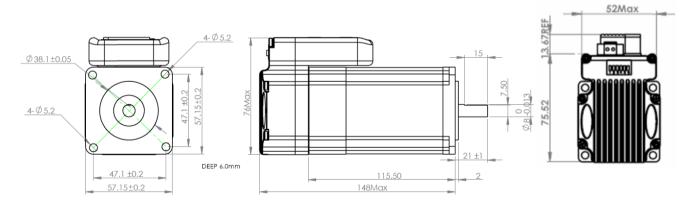

Motor Specifications

Part Number	ISV57T-090	ISV57T-130	ISV57T-180
Rated Power(W)	90	130	180
Rated Torque(Nm)	0.30	0.45	0.6
Peak Torque(Nm)	0.90	1.1	1.5
Rated Speed(rpm)	3000	3000	3000
Peak Speed(rpm)	4000	4000	4000
Rated Voltage(Vdc)	36	36	36
Weight(kg)	0.95	1.25	1.54


Applications


iSVxxx can be used in various applications such as laser cutters, laser markers, high precision X-Y tables, labeling machines, CNC router, etc. Its unique features make the iSVxxx an ideal choice for applications that require both low-speed smoothness and small mounting space.

1.2 Mechanical Specifications



Mechanical Specification of ISV57T-090

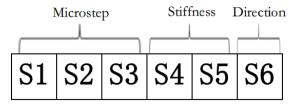
Mechanical Specification of ISV57T-130

Mechanical Specification of ISV57T-180

Chapter 2 Conection

2.1 Connectors and Pin Assignment

iSVxxx has three connectors, a connector for control signals connections, a connector for RS232 communication connection, and a connector for power connections.


			Control Signal Connector	
٩in	Name	I/O	Description	
1	PUL+	I.	<u>Pulse Signal</u> : In single pulse (pulse/direction) mode, this input represents pulse signal, active at each rising or falling edge (Software configurable). In double pulse mode (software configurable), this input	The faction of formation
2	PUL-	I	represents clockwise (CW) pulse, active both at each high level and low level. 4.5-24V for PUL-HIGH, 0-0.5V for PUL-LOW. For reliable response, pulse width should be longer than 2.5µs for 200K MAX input frequency or 1µs for 500K MAX input frequency.	The fuction of four pins will be different if ISV motor works in internal velocity mode.
3	DIR+	I	<u>Direction Signal</u> : In single-pulse mode, this signal has low/high voltage levels, representing two directions of motor rotation. In double-pulse mode (software configurable), this signal is counter-clock (CCW) pulse,	Pls refer to chapter 3 and chapter 4 about how to use these four
4	DIR-	I	active both at high level and low level. For reliable motion response, DIR signal should be ahead of PUL signal by 5µs at least. 4.5-24V for DIR-HIGH, 0-0.5V for DIR-LOW. Toggle DIP switch SW5 to reverse motion direction.	pins for velocity mode .
5	ALM+	0	<u>Alarm Signal</u> : OC output signal, activated when one of the following protection is activated: over-voltage and over current error. They can sink or source MAX 50mA current at 24V. By default, the impedance	
6	ALM-	0	between ALM+ and ALM- is low for normal operation and becomes high when any protection is activated. The active impedance of alarm signal is software configurable.	

Power Connector

Pin	Name	I/O	Description
1	+Vdc	I	Power Supply Input (Positive) 24-36VDC recommended. Please leave reasonable reservation for voltage fluctuation and back-EMF during deceleration.
2	GND	GND	Power Ground (Negative)

	RS232 Communication Connector							
Pin	Pin Name I/O Description							
1	+5V	0	+5V power output (Note: Do not connect it to PC's serial port)					
2	TxD	0	RS232 transmit.					
3	GND	GND	Ground.					
4	RxD	I	RS232 receive.					
5	NC	-	Not connected.					

2.2 DIP Switch Settings

. Pulses/Rev (S1-S3)

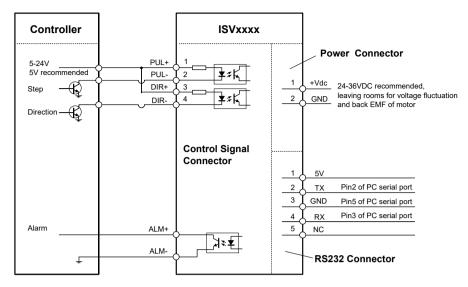
Pulse/rev	S1	S2	S3
Pr0.08	Off	Off	Off
1600	On	Off	Off
2000	Off	On	Off
3200	On	On	Off
4000	Off	Off	On
5000	On	Off	On
6400	Off	On	On
8000	On	On	On

Stiffness setting(S4—S5)

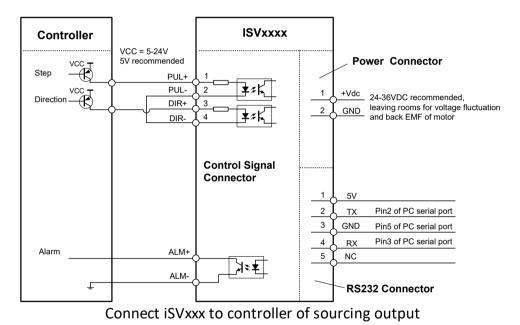
Stiffness	S4	S5
Pr0.03	Off	Off
72	On	Off
71	Off	On
70	On	On

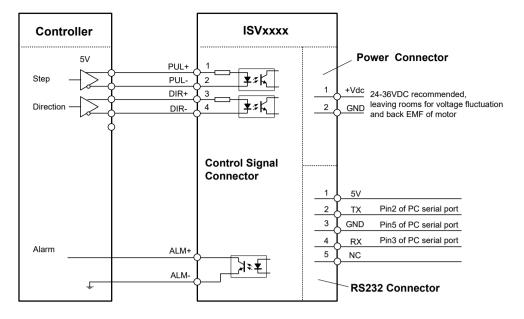
Motor Shaft Direction (S6)

DIP switch S6 is used for changing motor shaft rotation direction. Changing position from "ON" to "OFF", or "OFF" to "ON" will reverse iSVxxx rotation direction.


S6	Direction
Off	CCW
On	CW

2.3 RS232 Communication Cable Connections


Note 1: The RS232 communication port is not isolated. Please use an isolated power supply for the ISVxxx when the PC's serial port is not isolated.


Note2: Do not plug or unplug the connector when power is on.

2.4 Typical Connections

Connect iSVxxx to controller of sinking output

Connect iSVxxx to controller of differential output

Chapter 3 Parameter

3.1 Parameter List

Num	Name	Range	Default	Unit
Pr0.01	Control mode setup	20~21	20	
Pr0.02	Real-time auto-gain tuning	0~2	1	
Pr0.03	Selection of machine stiffness at real-time auto-gain tuning	50~81	70	
Pr0.04	Inertia ratio	0~10000	300	%
Pr0.06	Command pulse rotational direction setup	0~ 1	0	
Pr0.08	Command pulse input mode setup	0~ 32767	4096	Pulse
Pr0.13	1st torque limit	0~ 500	300	
Pr0.14	Position deviation excess setup	0~ 500	200	0.1rev
Pr0.20	Test result of inertia ratio	0~ 32767	0	%
Pr1.00	1st gain of position loop	0~ 30000	320	0.1/s
Pr1.01	1st gain of velocity loop	1~ 32767	180	0.1Hz
Pr1.02	1st time constant of velocity loop integration	1~ 10000	310	0.1ms
Pr1.03	1st filter of velocity detection	0~ 10000	15	
Pr1.10	Velocity feed forward gain	0~ 1000	300	0.10%
Pr1.11	Velocity feed forward filter	0~ 6400	50	0.01ms
Pr1.37	Register for special function	0~ 1	0	
Pr2.22	positional command smoothing filter	0~ 32767	0	0.1ms
Pr3.03	Speed command reversal input	0~ 1	0	
Pr3.04	1st speed setup	-5000 ~ 5000	0	r/min
Pr3.05	2nd speed setup	-5000 ~ 5000	0	r/min
Pr3.06	3rd speed setup	-5000 ~ 5000	0	r/min
Pr3.07	4th speed setup	-5000 ~ 5000	0	r/min
Pr3.12	time setup acceleration	0~ 10000	100	ms/(Krpm)
Pr3.13	time setup deceleration	0~ 10000	100	ms/(Krpm)
Pr3.24	maximum speed of motor rotation	0~ 5000	0	r/min
Pr4.06	input selection SI7	0~ 16777215	1200	
Pr4.07	input selection SI8	0~ 16777215	0E00	
Pr4.08	input selection SI9	0~ 16777215	8383	
Pr4.10	output selection SO1	0~ 16777215	1111H	
Pr4.31	Positioning complete range	0~ 10000	10	Pulse
Pr4.35	Velocity coincidence range	10~ 2000	50	r/min
Pr4.36	At-speed	10~ 2000	1000	r/min
Pr5.13	Over-speed level setup	0~ 5000	0	r/min
Pr5.20	Position setup unit select	0~ 2	0	

3.2 Parameter function

3.2.1 Basic Setting

Pr0.01* Control Mode Setup				Range	unit	default		ated ol mode	
	control mode se			Secup	20 - 21	-	20	Р	S
	Setup va	lue	st mode						
	20 P		Position						
	21		Velocity						

Pr0.02	Rea	l-time Aut	o-gain Tuning	Range	unit	default		ated ol mode
110.02	nea		o-gain runnig	0 -2	-	1	Р	S
You can se	etupt	he action mo	de of the real-time auto-gain t	uning.				
Setup val	lue	mode	Varying degree of load inertia	in motion				
0		invalid	Real-time auto-gain tuning func	tion is disa	bled.			
1StandardBasic mode. do not use unbalanced load, friction compensation or gain switching, mainly used for interpolation movement .						gain		
2 positioning positioning equipment with low friction, etc.,mainly used for point-to-point movement								
	•		ou can't modify the values of pr o-gain tuning ,all of them are se	•			them	
Pr0.03			nachine stiffness at real	Range	unit	default		ated ol mode
	tim	e auto gain	tuning	50 - 81	-	70	Р	S
	I	Low → M Low →	le the real-time auto-gain tunin achine stiffness → High Servo gain → High 70.69.68					
However, Control ga	igher (when ain is u	the setup val i increasing th updated whil	ue, higher the velocity response ne value, check the resulting op e the motor is stopped. can be set with switch with SW	eration to	avoid c	oscillation	orvibr	ation.

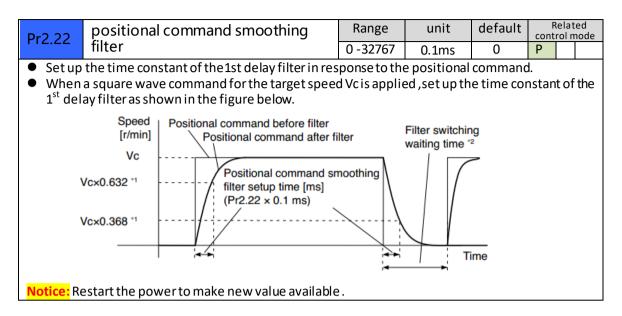
For ISV motor , stiffness can be set with switch with SW4,SW5, any change from the SW4,5 will be available after restarting power

Pr0.04	Inertia ratio	Range	unit	default		ated ol mode			
110.04		0 -10000	%	300	Р	S			
You can set up the ratio of the load inertia against the rotor(of the motor)inertia.									
Pr0.04=(load inertia/rotate inertia)×100%									
Notice:									
inertia rat becomes	tia ratio is correctly set, the setup unit of Pr1.01 is tio of Pr0.04 is larger than the actual value, the se larger, and when the inertia ratio of Pr0.04 is sma ocity loop gain becomes smaller.	etup unit of	the ve	locity loop	gain				

Pr0.06*	Command Pulse Rotational Direction	Range	unit	default		ated ol mode		
110.00	Setup	0 -1	-	0	Р			
Set command pulse input rotate direction, command pulse input type								
Pr0.07*	Command Pulse Input Mode Setup	Range	unit	default		ated ol mode		
110.07		0 -3	-	3	Р			

Pr0.06	Pr0.07	Command Puls	e Format	Sig	gnal	Dir	sitive ectior mman	-	Dire	ative ection nmand	I
0	0 or 2	90 phase difference 2-phase pulse(A p phase)		Puls sign					t1 t	ti 	 90°
	1	Positive direction negative direction	oulse+ pulse	Puls sign	-		t2 t2	,t3	t2 t2		-
	3	Pulse + sign				te				→ 5 "∟"	t6
1	0 or 2	90 phase differend 2 phase pulse(A pl phase)		Puls sign	-						
	1	Positive direction negative direction		Puls sign	-					_	
	3	Pulse+sign		Puls sign	•					— 	
Command	d pulse inp	out signal allow large	est frequency	and si	malles	ttim	ewidt				
PULS/SIG	GN Signal	Input I/F	Permissible Input Frequ		Sma t1		t Time 2	Widtl t3	h t4	t5	t6
Pulse	Long d	istance interface	500kpps	,	2		.2	1	1	1	1
series interface	0	collector output	200kpps		5	2	.5	2.5	2.5	2.5	2.5
Pr0.08	Comma	and pulse counts	per one mo	otor	Rang	e	unit	defa	ault		ated ol mode
	revolut				0-327		pulse	0		Р	
	ssettingis	ulse that causes sing 50,Pr009 1 st numera					.10 De	nomir	nator	ofele	ctronic
Pr0.20	Display	value of inertia r	atio		Ran	-	unit	defa	ault		lated ol mode
	Lispidy				0 - 32	767	%	0		Р	S
Notice: Pr0.04=Pr This value		nly for display the in	ertia value , tl	nisisu	ised fo	orset	ttingth	ne valu	ue of	Pr004.	

3.2.2 Gain Adjustment

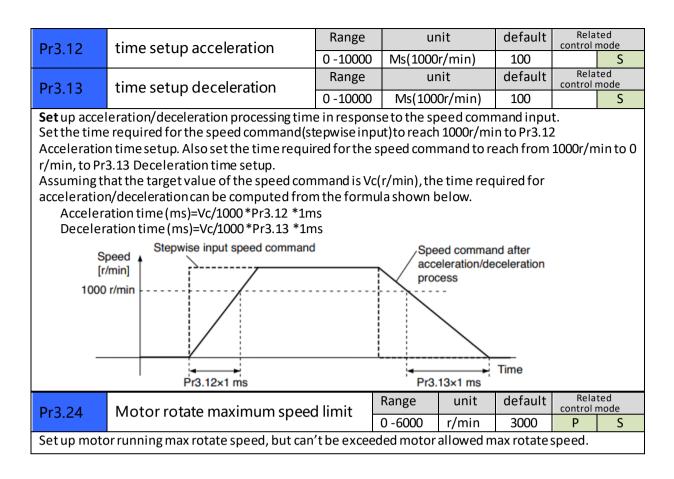

Pr1.00	1st gain of position loop	Range	unit	default		ated ol mode				
111.00	ist gam of position to op	0 -30000	0.1/s	320	Р					
		You can determine the response of the positional control system. Higher the gain of position loop you set, faster the positioning time you can obtain. Note that too high setup may cause oscillation.								

Pr1.01	1st gain of velocity loop	Range	unit	default		ated ol mode
111.01	ist gain of velocity loop	0 -32767	0.1Hz	180	Р	S
servo sys [.]	etermine the response of the velocity loop. In o tem by setting high position loop gain, you nee vever, too high setup may cause oscillation.			•		

Pr1.021st Time Constant of Velocity Loop
IntegrationRangeunitdefaultRelated
control mode0 -100000.1ms310PSYou can set up the integration time constant of velocity loop, Smaller the set up, faster you can
dog-in deviation at stall to 0.The integration will be maintained by setting to "99999".The integration

		l be los	t by setting to"	10000".							
Pr1	.03	1st F	ilter of Veloc	ity Detectio	on		Range	unit	defaul	contro	lated I mode
			p the time con		•			-			
the	motor	r noise,	igher the setup however, resp he filter param	onse become	s slow.	-			•		ase
		/alue	Speed Dete Cut-off Frec	ction Filter	Set Value	Speed Detection Filte			Filter		
		2	120		67			350			
	-	'1 '0	110		66 65	_		300 750			
		59	95		64			700			
		58 58	90		63			550			
	10		·· · · · ·			Ran	ge	unit	defaul	t Rel	lated
Pr1	.10	Velo	city feed for	ward gain		0 - 10	00 0	.1%	300	P	l mode
Multiply the velocity control command calculated according to the internal positional command by the ratio of this parameter and add the result to the speed command resulting from the positional control process.											
Pr1	.11	Velo	city feed for	ward filter		Ran	ge	unit	defaul		lated I mode
			stant of 1st del			0 -64		.01ms	50	Р	
incr		•	d forward will b								
the Pos	value ition d	eratior of velo leviatio	n at a constant s ocity feed forwa on [unit of com	orward filters peed is reduc ird gain. mand]=comm	set at approx ced as showr nand speed [k.50 (0 n in th).5ms).⊺ e equat	The pos ion belo	itional d ow in pro	eviation portion	to
the Pos gair	value ition d n[1/s]×	eratior of velo leviatio (100-s	n at a constant s ocity feed forwa on [unit of com peed feed forw	orward filters peed is reduc ird gain. mand]=comm ard gain[%]/1	set at approx ced as showr nand speed [k.50 (0 n in th	0.5ms).⊺ e equat of comm	The pos ion belo	itional d ow in pro	eviation oportion n loop t Re	lated
the Pos gair Pr1	value ition d n[1/s]× .37	eratior of velo leviatio (100-s Regi	n at a constant s ncity feed forwa on [unit of com peed feed forw ster for spec	orward filters peed is reduc ird gain. mand]=comm ard gain[%]/1	set at approx ced as showr nand speed [(.50 (C n in th unit (0.5ms).⊺ e equat of comm ge	The pos ion belo nand /s]	itional d ow in pro /positio	eviation oportion n loop t Re	
the Pos gair Pr1 Do s	value ition d n[1/s]× .37 specia	eratior of velo leviatic (100-s Regi	n at a constant s ncity feed forwa on [unit of com peed feed forw ster for spec g as below :	orward filters peed is reduc ird gain. mand]=comm ard gain[%]/1	set at approx ced as showr nand speed [x.50 (C n in th unit c Ran	0.5ms). e equat of comm ge C	The posion belonand /s] unit	itional d ow in pro /position defaul	eviation portion n loop t Re contro	lated I mode
the Pos gair Pr1 Do s	value ition d n[1/s]× .37 specia	eratior of velo leviatio (100-s Regi	n at a constant s ncity feed forwa on [unit of com peed feed forw ster for spec g as below :	orward filters peed is reduc ird gain. mand]=comm ard gain[%]/1 ial function	set at approx ced as showr nand speed [00	(.50 (C) in th unit (Ran 0 - 1	0.5ms).⊺ e equat of comm ge C 【 描え	The posion belonand /s] unit 0.01ms	itional d ow in pro /position defaul	eviation portion n loop t Re contro	lated I mode
the Pos gair Pr1 Dos	value ition d n[1/s]× .37 specia Settin	eratior of velo leviatic (100-s Regi	n at a constant s ncity feed forwa on [unit of com peed feed forw ster for spec g as below :	orward filters peed is reduc ind gain. mand]=comm ard gain[%]/10 ial function =0: Velocit =1: Velocit	set at approy ced as shown nand speed [00 y Feedforwa y Feedforwa	 c.50 (Contract of the second se	0.5ms).⊺ e equat of comm ge 0	The position belocities ion belocities in the position belocities in the positive position belocities in the positive position belocities in the positive po	itional d ow in pro /position defaul	eviation portion n loop t Re contro	lated I mode
the Pos gair Pr1 Dos	value ition d n[1/s]× .37 specia Settin Pr1.37	eratior of velo leviatio (100-s Regi l settin gvalue	n at a constant s poity feed forwa on [unit of com peed feed forw ster for spec g as below :	orward filters peed is reduced and gain. mand]=commard gain[%]/10 ial function =0: Velocit =1: Velocit =0: Torque =2: Torque	set at approx ced as shown nand speed [00 y Feedforwa y Feedforwa Feedforwar Feedforwar	c.50 (Control in the unit of the control in the control i	0.5ms). e equat of comm ge 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	The position belocities the posities the posities the position belocities the	itional d ow in pro /position defaul	eviation portion n loop t Re contro	lated I mode
the Pos gair Pr1 Dos	value ition d n[1/s]× .37 specia Settin, Pr1.37 Pr1.37	eratior of velo leviatic (100-s Regi I settin gvalue 2 & 0x0	a ta constant s ocity feed forwa on [unit of com peed feed forw ster for spec g as below : 1	orward filters speed is reduce and gain. mand]=comm ard gain[%]/10 ial function =0: Velocit =1: Velocit =0: Torque =2: Torque =0: "motor =4: "motor	set at approx ced as shown nand speed [00 y Feedforwa y Feedforwar Feedforwar reedforwar over speed	<pre>c.50 (C n in th unit c Ran 0 - 1 rd is a rd is f d is av d is fo Er1A1 Er1A1</pre>	0.5ms). e equat of comm ge c ge c d vailable vailable, r bidder '' is ava ." is fort	The position below hand /s] unit 0.01ms <u>t</u> h; h; h; h; h; h; h; h; h; h; h; h; h;	itional d ow in pro /position defaul 0	eviation portion n loop t Re contro	ated I mode
the Pos gair Dos	value ition d n[1/s]× .37 specia Settin Pr1.37 Pr1.37	eratior of velo leviatic (100-s (100-s) Regi l settin g value 7 & 0x0 7 & 0x0	a t a constant s ocity feed forwa on [unit of com peed feed forw ster for spec g as below : 1 2 4	orward filters peed is reduce ard gain. mand]=command ard gain[%]/10 ial function =0: Velocit =1: Velocit =0: Torque =2: Torque =0: "motor =4: "motor =8: "Position =8: "Position	set at approx ced as shown nand speed [00 y Feedforwa y Feedforwar Feedforwar Feedforwar cover speed on following on following	c.50 (C nin th unit c Ran 0 - 1 rd is a rd is fo d is av d is fo Er1A1 error error	0.5ms). 1 e equat of comm ge 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	The posion belonand /s] unit 0.01ms 1	itional d ow in pro /position defaul 0	eviation portion n loop t Re contro	ated I mode
the Pos gair Dos	value ition d n[1/s]× .37 specia Settin Pr1.37 Pr1.37 Pr1.37	eratior of velo leviatic (100-s Regi I settin g value 7 & 0x00 7 & 0x00	a t a constant s ocity feed forwa on [unit of com peed feed forw ster for spec g as below : 1 2 4 8	orward filters speed is reduce and gain. mand]=comm ard gain[%]/10 ial function =0: Velocit =1: Velocit =0: Torque =2: Torque =0: "motor =4: "motor =0: "Positio	set at approx ced as shown nand speed [00 y Feedforwa y Feedforwar Feedforwar rover speed on following on following on following oad Er100" is erload Er100	<pre>c.50 (C n in th unit c Ran 0 - 1 rd is a d is fo Er1A1 error error avail 0" is fo</pre>	0.5ms). 1 e equat of comm ge 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 3 2 2 3 3 3 3 2 3	The position below hand /s] unit 0.01ms 1.01	itional d ow in pro /position defaul 0	eviation portion n loop t Re contro	lated I mode

3.2.3 Vibration Suppression


3.2.4 Velocity Control

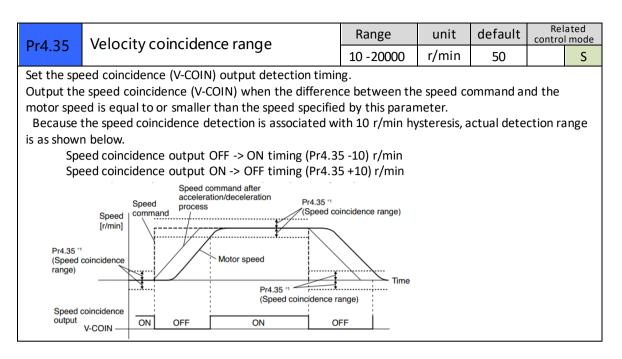
Pr3.03	Re	Reversal of speed command input	Range	unit	default	R conti	elate rol m		
115.05	i.e	· · ·			-	0		S	
Specify the polarity of the voltage applied to the analog speed command (SPR).									
Setup value Motor rotating direction									
0		Non-reversal	[+voltage] —{+ direction]	[-voltage] →[-	direction]			
1		reversal	[+voltage] —{-direction]	[-voltage]	→ [+	direction]			
Caution: When you compose the servo drive system with this driver set to velocity control mode									
and external positioning unit, the motor might perform an abnormal action if the polarity of the									
speed cor	nmar	nd signal from the	unit and the polarity of this p	parameter	setup	does not n	าatch		

Pr3.04	1th speed of speed setup	Range	unit	default	-	lated I mode
115.04		-20000 -20000	r/min	0		S
Pr3.05	2th speed of speed setup	Range	unit	default	-	lated I mode
113.03		-20000 -20000	r/min	3000		S
Pr3.06	3th speed of speed setup	Range	unit	default		lated I mode
115.00	strispeed of speed setup	-20000 -20000	r/min	0		S
Pr3.07	4th speed of speed setup	Range	unit	default	-	lated I mode
113.07		-20000 -20000	r/min	0		S

Set up internal command speeds, 1st to 4th

selection 1 of internal command speed(INTSPD1)	selection 2 of internal command speed (INTSPD2)	selection of Speed command
OFF	OFF	1st speed
ON	OFF	2nd speed
OFF	ON	3rd speed
ON	ON	4th speed

3.2.5 I/F Monitoring Function


Pr4.06	DIR+/DIR- Input Selection	Range	unit	Default	Related control mode				
114.00	0-00FFFFFh -		0x1200	S					
If ISV motor works in position mode , pls make sure Pr406 set as default setting 0x1200. If ISV motor works in velocity mode , pls make sure Pr406 set as below :									
Signal na	ame	symbol	value						
Selectio	n 1 input of internal command speed	INTSPD1	8E**h						
Selectio	n 2 input of internal command speed	INTSPD2	8F**h						
For exam	ple , Pr406 set as 0x8E00 or 0x8F00 .								
	1) Power need to be restarted to make		vailable	•					
	The value of Pr406 can't be set equ	ally to Pr407.							

Pr4.07	PUL+/PUL-Input Selection	Range	5		Related control mode			
14.07	0-00FFFFFh -		0x0E00	S				
If ISV motor works in position mode, pls make sure Pr407 set as default setting 0x0E00.								
If ISV mot	or works in velocity mode , pls make s	ure Pr407 set a	s below :					
Signal na	Signal name symbol value							
Selectio	n 1 input of internal command speed	INTSPD1	8E**h					
Selectio	n 2 input of internal command speed	INTSPD2	8F**h					
For exam	For example , Pr406 set as 0x8E00 or 0x8F00 .							
Notice: 1) Power need to be restarted to make new value available .								
2) The value of Pr407 can't be set equa	ally to Pr406.						

Pr4.08	Servo on status for enabling	Range	unit	Default	Related control mode
P14.00	Serve off status for enabling	0-00FFFFFFh	-	0x8383	S
This parameter set the status of servo on for enabling , enabling means the shaft of motor is lock , disabling means the shaft of motor is free and can be run with hand .					
Setvalue	Details				
0x8383	Servo on are ready for both posit	Servo on are ready for both position mode and velocity mode after power on			
0x0383	Servo on is ready for position mo	Servo on is ready for position mode , but not for velocity mode after power on.			
0x8303	Servo on is ready for velocity mo	Servo on is ready for velocity mode , but not for position mode after power on			
0x303	0x303 Servo on is unavailable for both position mode and velocity mode after power on			oweron	
Notice : new value is available without restarting the power .					

	Pr4.10 Output selection of ALM+/ALM-			Range	è	unit		Rel control	ated mode
P				0-00FF	FFFFh	-	0x1111	Р	S
Assign functions to SO outputs. This parameter use 16 binary system do setup, as following : 00 * * h: position control 00 * * h: velocity control Please at [**] partition set up function number.									
	Signal r	iame	symb	ol	Setup	/alue			
	Invalid		-		00h				
	Alarmo	output(a contact)	Alm		01h				
	Alarmo	output(b contact)	Alm		11h				
	Positio	ning complete output	INP		04h				
	At-speed output AT-SF		PED	05h					
	Velocit	y coincidence output	V-COIN 08h						
Ν	Notice : 1) New value will be available imediately . 2) The value of Pr410 can't be set equally to other IO setting .								

Pr4.31	Pr4.31 Positioning complete range		unit	default	Rel contro	ated I mode
P14.51	Positioning complete range	0 -10000	Encoder unit	10	Р	
Set up the timing of positional deviation at which the positioning complete signal (INP1) is output.						

3.2.6 Extending setup

Pr5.13 Over-speed level setup		Range	unit	default	Rel contro	ated I mode
PI5.15	Over-speed lever setup	0-20000	r/min	0	Р	S
If the mot	If the motor speed exceeds this setup value, Err1A.0[over-speed protect] occurs.					
The over-speed level becomes 1.2 times of the motor max, speed by setting up this to 0.						

Chapter 4 Alarm

The green light turns on when iSVxxx is powered on and functions normally. In any case that drive protection is activated, the red LED blinks periodically (in every 4 seconds) to indicate the error type. In each blink, red light is on for 0.2 second and then off for 0.3 second.

Priority	Time(s) of Blink	Sequence wave of red LED	Description
1st	1	0.5s 5s 0.5s	Hardware Over-current protection activated when peak current is greater than 18A
2nd	2	0.5s0.5s 0.5s 5s 0.5s	Over-voltage protection activated when drive working voltage is greater than 60VDC
3rd	3	0.5s0.5s	Software over-current protection
4th	4		Over-load protection
5th	5	0.5s0.5s +++++ +++++++++++++++++++++++++++++	Encoder error activated when encoder connection or feedback is not correct
6 th	6		number of pole-pairs error activated when the number of pole-pairs setting is wrong
7th	7		Position following error activated when position following error limit exceeded the pre-set value (4000 pulses by default, or value set value by a customer)
8th	1 short 1 long	0.5s0.5s 1.5s 5s 0.5s0.5s 1.5s	Motor stall protection
9th	1 short 2 long	0.5s0.5s 1.5s 5s 0.5s0.5s 1.5s	Current null shift protection
10th	1 short 3 long		Parameter saving error
11th	1 short 4 long		Others error

ALM	Over current(hardware)	Over voltage	Over current (software)	Overload
Code in Protuner	Er0E1	Er0C0	Er0E0	Er100
LED Blink	1 short	2 short	3 short	4 short

ALM	Enocder err	Poles err	Pos following err	Over speed
Code in Protuner	Er150/Er151	Er0D1	Er180	Er1A0/Er1A1

LED Blink

6 short 7 short

1 short , 1 long

Chapter 5 Run

5.1 Inspection Before trial Run

No	Item	Content
1	Inspection on wiring	Power cable , tuning cable , signal cable
2	Confirmation of power supply	The voltage between Vdc and Gnd is no more than 36Vdc .
3	Fixing of position	Motor installation
4	Inspection without load	Motor shaft doesn't connect the load

5.2 Run

ISV**** can work in both position mode and internal velocity mode .

5.2.1 Position control

connection

Port	Default	
+Vdc	+24V~+36Vdc	
GND	Power GND	
PUL+/PUL-	Pulse input signal	
DIR+/DIR-	Direction input signal	
ALM+/ALM-	Alm output signal	
SW1	Microstep setting	
SW2	Microstep setting	
SW3	Microstep setting	
SW4	Stiffness selection 1	
SW5	Stiffness selection 2	
SW6	Running direction	

Steps:

Connect the motor with tuning cable (CABLE-PC-i)

a) How to find the ratio of inertia for one axis

It is very important to find ratio of inertia for one axis in order to make best performance before setting other parameter (for example, setting PID of position loop or velocity loop).

Here below is step to find ratio.

Connect motor with load if you need to test one axis.

Do make the axis can be moved in safe distance, any interference should be avoided to ensure safety and accuracy of testing .

- 1.1 set the driver working in position loop (pr0.01=20).
- 1.2 click "run test" , then set the following value below :

M Leadshine ELSSeries	
Communication Display Tools Language Help	
Run Test	<u>×</u>
PositionEmor(p) PositionCommandVelocity(pm)	-Select Channel
20 4100 1900 1900	0 v 1 PositionError (p)
16 3280 1520 152	
12 2460 1140 114	0 ▼ 3 VelocityFeedback(rpm) ▼
	▼ 4 CurrentFeedback(%)
3 1640 1640 760 760 760	Sampling Setup
4 820 A 380 380 380 380 380 380 380 380 380 380	Trigger Source VelocityFeedback -
	Trigger Mode RisingEdgeTrigger -
-380 -381	
1640	Display Points 1000 💌
-1140 -1140	Sampling Interval (ms) 30+0.125 💌
	Cycle Sampling(ns) 1000 -
-16 -3280 -1520 -1520 -1520	20
-1900 -190	n
0 375 750 1125 1500 1875 2250 2625 3000 3375 3750	
Current/Feedback(//) Time(ms) VelocityFeedback(npm)
Position Gain-	Velocity Mode
1stPositionLoopGain 175 1stVelocityLoopGain 140 1stTorgueFilter 200 1stVelocityLoopIntegrationTimeCon	
2ndPositionLoopGain 220 2ndVelocityLoopGain 140 2ndTorqueFilter 200 2ndVelocityLoopIntegrationTimeCom	stant 10000
VelocityFeedforwardGain 300 TorqueFeedforwardGain 150 ControlSwitchingMode 10 RatioOfInert	a (%) 200 Jeg Hode
Real zime Autonatic Adjustment Mode Locate 💌 Real time Autonatic Adjustment Rigid 10 💌	
Speed Trapezoidal Parameters	Start
Velocity(rpm) 1500 AccelerationAndDecelerationFine(ms/Krpm) 100 IntervalTime(ms) 400	
Distance (0. 1rev) 500 RepeatTimes 3 RunningMode Positive	ndNegative
	ndwegative + the motor will start.

Set Real timeAutomaticAdjustmentMode as Manual,

And set Real timeAutomatic Adjustment Rigid as ${\bf 70\,or\,71}$.

Then set: Velocity = 1500 rpm, acceleration = 100, interval time = 1000,

distance = 500 (0.1 rev) Repeat time = 3, RunningMode : Positive and negative

Check the value of $\mathsf{Pr}020$, then minus 100 , the result means the value of $\mathsf{pr}004$.

For example,

Check the value of Pr020, if the value is 500, then pr004 =400, it means the ratio of inertia equals 4. (If you can't find the pr020, refer to appendix "How to find the hidden parameter")

b) Set electric ratio

Pr008 can be set for counts per rev if SW1 and SW2 are both OFF . Or change the status of SW1 and SW2 to change the counts per rev .

Or change the status of SW1 and SW2 to change the co

c) set running direction

Both SW6 and Pr006 can be used to set direction of running .

d) download and save the new value , and restart the power to make values available .

5.2.2 Internal speed control

Port		
+Vdc	24-50 Vdc	
GND	Power gnd	
PUL+/PUL-	INTSPD1	Pr4.07=8E00
DIR+/DIR-	INTSPD2	Pr4.06=8F00
ALM+/ALM-	Alm output signal	
SW4	Stiffness selection1	
SW5	Stiffness selection2	

- a) set pr003 and pr004 in position mode (pr001=20)
- b) set pr001=21, set pr407 and pr406 as 8E00 and 8F00
- c) set the velocity value : set pr304=0 ,pr305=1000 , set pr306= -500 , pr307= 1500, there must be one velocity as 0 .
- d) set the value for acceleration and deceleration for Pr312 and Pr313

【INTSPD1】	【INTSPD2】	Veloctiy value
OFF	OFF	Pr3.04
ON	OFF	Pr3.05
OFF	ON	Pr3.06
ON	ON	Pr3.07

Frame (mm)	Output power (W)	Type name	Rated Torque (N.M)	PeakTorque (N.M)
	90	ISV-B23090T-D4	0.3	0.8
57	130	ISV-B23130T-D4	0.45	1.1
	180	ISV-B23180T-D4	0.6	1.5
Cable	Cable for Tuning		Cable – PC-i	

Chapter 6 Order information

Appendix

How to find the hidden parameter

The value of many parameters are forbidden to change , because usually the value has been set properly, however some parameters are needed to be checked or changed, for example , Pr715 need to be changed to match the motor type.

Here is the step to change the value of Pr020:

Run the software of ProTuner, we just find part of the parameter:

• 🛒 🔚 🚳	🥖 🗰 📃						
rameter Manage	A [
ReadFile Savek	Unload		un et er Compare	~ ~	Help		
Classify Select	Parameter N.	. ParameterName	Value	Range	Default	Units	Remark
asicSetting	Pr0.01	Control mode	1	0~5	0	-	Power of
ainAdjustment ibrationSuppression	Pr0.02	Real-time auto-gain tuning mo	2	0~2	0	-	No
ibrationSuppression elocityTorgueControl	Pr0.03	Real-time auto-gain tuning stiff	11	0~31	11	-	No
onitorSetting	Pr0.04	Ratio of inertia	250	0~10000	250	%	No
ctensionSetting pecialSetting	Pr0.06	Command pulse polar setup	0	0~1	0	-	Power of
sctorySetting	Pr0.07	Command pulse input mode s	3	0~3	3	-	Power off
	Pr0.08	Command pulse counts per o	0	0~ 32767	0	Pulse	Power off
	Pr0.09	1st numerator of electronic gear	1	1 ~ 32767	1	-	No
	Pr0.10	Denominator of electronic gear	1	1 ~ 32767	1	-	No
	Pr0.11	Output pulse counts per one m	2500	1 ~ 2500	2500	P/rev	Power off
	Pr0.12	Pulse output logic reverse	0	0~1	0	-	Power of
	Pr0.13	1st torque limit	300	0~500	300	-	No
	Pr0.14	Position deviation setup	200	0~500	200	0.1 rev	Encoder
	Pr0.16	Extenal regenerative resistor	50	10~500	50	9	Power off
	Pr0.17	Regeneration discharge resis	50	10~5000	50	w	Power off
	Pr0.18	Vibration suppression - N after	0	0~1000	10	Pulse	Encoder
	Pr0.19	Microseismic inhibition	0	0~1000	10	0.1Pulse	Encoder
Add Custom	1				_		

- 1. Now here is the way to find all of them :

 - b. Click "description":

ameter Manage							
BeadFile 💾 SaveAs	👚 Unload 🚽	Download 🗰 Save 👔	ParameterCompare	🧬 Beset 🜔	Help		
Classify Select	Parameter N	ParameterName	Value	Range	Default	Units	Remark
sicSetting	Pr7.15 Pr7.16	Motor model input Encoder selection	8	0 ~ 7FFF 0 ~ 512	3	-	Hexadeo
UratioGuppersien JacityGraphetartal JacityGraphetartal JacityGraphetarta Hennigerting Velangerting Velangerting							
Add Custon							

c. Then double click "factorysetting", then we can find all parameter:

Classify Select	Parameter N	ParameterName	Value	Range	Default	Units	Rema
sicSetting	Pr0.00	Mode loop gain	772	0 ~ 32767	1	0.1Hz	No
inAdjustment	Pr0.01	Control mode	1286	0~10	0	-	Power
brationSuppression locityTorqueControl	Pr0.02	Real-time auto-gain tuning mo	1800	0~2	0	-	No
nitorSetting	Pr0.03	Selection of machine stiffness	2314	0 ~ 31	11	-	No
tensionSetting	Pr0.04	Ratio of inertia	2828	0~10000	250	%	No
ecialSetting ctorySetting	Pr0.05	Command pulse input selection	3342	0~1	0	-	No
	Pr0.06	command pulse rotational dir	3856	0~1	0	-	Power
1	Pr0.07	Command pulse input mode s	4370	0~3	3	-	Power
	Pr0.08	Command pulse counts per o	4884	0~32767	0	Pulse	Power
	Pr0.09	1 st numerator of electronic gear	5398	1 ~ 32767	1	-	No
	Pr0.10	Denominator of electronic gear	772	1 ~ 32767	1	-	No
	Pr0.11	Output pulse counts per one m	1286	1~2500	2500	P/rev	Power
	Pr0.12	Reversal of pulse output logic	1800	0~1	0	-	Power
	Pr0.13	1 st torque limit	2314	0~500	300	-	No
	Pr0.14	Position deviation setup	2828	0~500	200	0.1 rev	Encod
	Pr0.15	Absolute encoder setup	3342	0~2	0	-	No
	Pr0.16	Extenal regenerative resistor	3856	10~500	50	Ω	Power
	Pr0.17	Regeneration discharge resis	4370	10~5000	50	W	Power
	Pr0.18	Vibration suppression - N after	4884	0~1000	10	Pulse	Encod
	Pr0.19	Microseismic inhibition	5398	0~1000	10	0.1Pulse	Encod
	UPr0.20	Reserved parameter	772	0 ~ 32767	0	-	No
	Pr0.21	Reserved parameter	1286	0 ~ 32767	0	-	No
	Pr0.22	Reserved parameter	1800	0~32767	0	-	No
Add Custom			0.04.4	0.01.00303			

Trouble shooting

Problem	Solution		
Motor don't run	 ◇ If in position mode, : make sure pr408=8383, pr406=1200, pr407=E00; make sure voltage of input signal (pulse + direction) is between 5 - 24V. ◇ If in internal velocity mode : Make sure pr406 and pr407 are 8F** and 8E** ; Make sure pr304=0 Make sure pr408=8383 		
ALM	Refer to chapter 4 for details		
Factory setting can't be set	Change the value of Pr408 to 303 .		
The stiffness can't be changed	Check the status of SW3-SW5.		